What is IRNSS - Indian Regional Navigation Satellite System
According to ISRO (Indian Space Research Organisation), Indian Regional Navigation Satellite System (IRNSS) is an independent regional navigation satellite system being developed by India. It is designed to provide accurate position information service to users in India as well as the region extending up to 1500 km from its boundary, which is its primary service area. An Extended Service Area lies between
primary service area and area enclosed by the rectangle from Latitude 30 deg South to 50 deg North, Longitude 30 deg East to 130 deg East.
IRNSS will provide two types of services, namely, Standard Positioning Service (SPS) which is provided to all the users and Restricted Service (RS), which is an encrypted service provided only to the authorised users. The IRNSS System is expected to provide a position accuracy of better than 20 m in the primary service area.
Some applications of IRNSS are:
- Terrestrial, Aerial and Marine Navigation
- Disaster Management
- Vehicle tracking and fleet management
- Integration with mobile phones
- Precise Timing
- Mapping and Geodetic data capture
- Terrestrial navigation aid for hikers and travellers
- Visual and voice navigation for drivers
Why It Is Being Developed
The system was developed partly because access to foreign government-controlled global navigation satellite systems is not guaranteed in hostile situations, as happened to the Indian military in 1999 when it was dependent on the American Global Positioning System (GPS) during the Kargil War and they denied to give access of GPS to Indian military.
Space Segment
The constellation consists of 7 satellites. Three of the seven satellites are located in geostationary orbit (GEO) at 32.5° East, 83° East, and 131.5° East longitude, approximately 36,000 km (22,000 mi) above earth surface. Remaining four satellites are in inclined geosynchronous orbit (GSO). Two of them cross equator at 55° East and two at 111.75° East. The four GSO satellites will appear to be moving in the form of an "8".
Accuracy
The system is intended to provide an absolute position accuracy of better than 10 meters throughout Indian landmass and better than 20 meters in the Indian Ocean as well as a region extending approximately 1,500 km (930 mi) around India. The Space Applications Center in 2017 said NAVIC will provide standard positioning service to all users with a position accuracy up to 5 m. The GPS, for comparison, had a position accuracy of 20–30 m. Unlike GPS which is dependent only on L-band, NAVIC has dual frequency (S and L bands). When low frequency signal travels through atmosphere, its velocity changes due to atmospheric disturbances. US banks on atmospheric model to assess frequency error and it has to update this model from time to time to assess the exact error. In India's case, the actual delay is assessed by measuring the difference in delay of dual frequency (S and L bands). Therefore, NavIC is not dependent on any model to find the frequency error and is more accurate than GPS.
Comments
Post a Comment